Exercise 3

Solve the differential equation.

$$
y^{\prime \prime}+2 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+2=0
$$

Solve for r.

$$
r=\{-i \sqrt{2}, i \sqrt{2}\}
$$

Two solutions to the ODE are $e^{-i \sqrt{2} x}$ and $e^{i \sqrt{2} x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{-i \sqrt{2} x}+C_{2} e^{i \sqrt{2} x} \\
& =C_{1}(\cos \sqrt{2} x-i \sin \sqrt{2} x)+C_{2}(\cos \sqrt{2} x+i \sin \sqrt{2} x) \\
& =\left(C_{1}+C_{2}\right) \cos \sqrt{2} x+\left(-i C_{1}+i C_{2}\right) \sin \sqrt{2} x \\
& =C_{3} \cos \sqrt{2} x+C_{4} \sin \sqrt{2} x,
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are arbitrary constants.

